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Abstract: This paper presents a novel approach of band selection for dimensionality reduction in 

Hyperspectral images (HSI). There are several methods of dimensionality reduction which can be further 

categorized into two groups; feature extraction and feature or band selection. Due to transformation in feature 

extraction, the critical information may have been distorted. Hence feature selection is preferable for 

dimensionality reduction because it preserves the relevant original information. Despite many algorithms exist 

for dimensionality reduction; it is even now a challenging task of selecting informative bands from the large 

volume data. The number of bands is estimated with the concept of Virtual Dimensionality (VD), because it 

provides reliable estimate. Bands are selected from hyperspectral images using Exemplar Based Band Selection 

(EBBS). End members are extracted from the selected bands using Simplex Growing Algorithm(SGA). The 

performance of EBBS is compared with the existing band selection techniques such as Constrained Band 

Selection (CBS) and Similarity Based Band Selection (SBBS) using the spectral angle distance as a measure. 

Keywords:  Hyperspectral images, Virtual Dimensionality, Simplex Growing Algorithm, Exemplar based band 

selection, Spectral angle distance. 

 

I. Introduction 
The hyperspectral images can now concurrently capture hundreds of image band with wavelength 

range from the visible spectrum to the infrared region, due to the great improvement in current decade [3]. Even 

though the large number of hyperspectral bands provides sufficient information to distinguish resources, they 

may bring some problems, like Hughes phenomena [4]. Besides, the development of the mass data also stress 

significant calculation power. As an outcome of the dimensionality reduction is one of the most essential 

preprocess steps in hyperspectral data analysis to deal with these issues. Band selection (BS) is an efficient 

approach for hyperspectral dimensionality reduction, which has been rewarded an increasing attention in current 

years. The existing BS method [1] [2] consist of two broad types, namely supervised and unsupervised methods 

respectively. The supervised methods have need of training samples that may be virtually not available [5]. 

Thus, this paper mainly focus on unsupervised BS method. The unsupervised technique can be implicited as the 

development of selecting a skilled division from a larger set of bands, without any prior knowledge. Various 

unsupervised BS methods are based on information estimate resources. Their aim is to decide the subset with 

huge information [9]–[11], low similarity [5].  

In order to choose the representative instead of extreme bands, currently, the researchers take BS as a 

clustering problem, i.e., a process of partitioning the bands into group of similar clusters. In these conditions, the 

cluster centers are generally considered preferable to insignificant bands. Based on different distant measures, 

like interquartile range, correlation coefficient and covariance, Ahmad estimated cluster and select the bands by 

corresponding different k-means version. These clustering-based methods can be hidden as the direct 

application of the clustering methods to hyperspectral bands. Though the centers of the clusters seem to be a 

best option these methods undergo from large computation complexity. Moreover, these methods may be 

greatly inclined by many clusters. Finally, these clustering methods require spherical distribution of the data 

since a data point is assigned to the closest center. In this paper, we  choose the cluster centers without the actual 

clustering. Particularly, for each band, we use a pointer termed exemplar score (ES) to measure the possibility of 

a band to be an exemplar.  

The ES utilizes two reasonable assumptions namely, the exemplars contains maximum local density 

and they are at a comparatively great distance from points of higher density. Based on ES, we here represent a 

fast BS method, i.e., Exemplar Based Band Selection (EBBS), which aims to select the bands with high chance 

to be exemplars (or high ES).  EBBS does not involve actual clustering; as a substitute, it prioritizes the bands 

according to their ESs. EBBS has quite low computation complexity since it is actually a band-ranking method,. 

In accumulation, it is verified in the experiment, EBBS is able to identify nonspherical clusters. And also, EBBS 

has no distribution requirements of the data points. 
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II. Exemplar Based Band Selection 

BS has its source in the fact that hyperspectral bands have high correlation. For a highly correlated 

subset of bands, we may need only the most representative one. As a result, BS is associated with data 

clustering. In this paper, each band of hyperspectral data are regarded as a data point in high-dimensional space. 

The main purpose of this paper is to present an algorithm that can determine the exemplars of these points 

accurately and efficiently. This method utilizes two reasonable assumptions: First   the cluster centers must have 

the highest local density (i) , and the second is that they have comparatively larger distance (i) to the points of 

gretaer density. In the following, we first demonstrate the computation of ρi and δi in detail.  

Assume the hyperspectral data set is XNXL = [x1, x2, . . . , xL] where xi = [x1i, x2i, . . . , xNi] T  represents 

vector constructed by the ith band, N represents the number of pixels and L represents the number of total bands. 

First the distance matrix of bands wants to be computed. Let dij denote the Euclidean distance between the ith 

band xi and jth band xj , then 

dij = || xi  –  xj || 2              (1) 

 

where  || • || is the 2-norm operator. ρi is defined as the number of points that are adjacent to point i, which can 

be implicit as using a hard threshold to define neighbors. In this paper, we utilize a soft threshold, known as 

Gaussian heat kernel function, to define ρi as follows: 

𝜌𝑖 =   exp  −  
𝑑𝑖𝑗

2𝜎2 
𝐿
𝑗=1                       (2) 

 

where σ is a adjusting parameter. The calculation of δi is quite simple, as its definition is the closest distance to 

the points of greater density from point i, as follows: 

𝛿𝑖 =  𝑚𝑖𝑛𝑗 :𝜌𝑗>𝜌𝑖
  𝑑𝑖𝑗                           (3) 

 

For the point with the maximum local density, we simply let δi = maxj (dij). From the definition of δi , 

only the points with local or global maxima density have a relatively large δi. In reality, δi plays an important 

role in the repression of extremely correlated bands. 

These two indicators can suitably characterize the location of the bands in data clouds and play a very 

important role in the presentation of our method. Particularly, when ρi is large and δi is small, then the ith band 

is close but not the cluster center since there is a point which is in the same cluster having a larger ρi. When ρi 

and δi are small, this point lies about the edge of the clusters and if ρi is small and δi is large, the point is away 

from the entire data cloud,which indicates that the point is most likely an outlier. It is possible only when both ρi 

and δi are relatively large that the point can be exemplars.  

Based on this, we utilize the product of ρi and δi to measure the probability of the bands to be 

exemplars. In this paper, the indicator is termed ES as follows: 

ESi   =   i    i             (4) 

 

When ρi and δi are both of large values then the i-th band have large ESi, which indicates a high 

possibility to be exemplars. Once the ES for the bands have been calculated, the BS  for ECA is simple, ranging 

the bands according to their ESs from high to low and  selecting the peak value. Therefore, EBBS is 

fundamentally a band prioritization method.  

The existing band BS methods, suffer from the high correlation between the selected bands since the 

similar bands  have similar values. Although EBBS is a band-prioritization-based method, it gives full concern 

of the correlation between the bands. Suppose the order of ES is ESm1 > ESm2 > · · · > ESmL, 1 ≤ m1,m2,mL ≤ 

L. The first band, named m1, correspond to the center of the large cluster since it has the highest ES. Then, band 

m2, which has the second largest ES, must contain huge distance from band m1. Suppose, if band m2 is close to 

band m1, then it will lead to a small δm2 and therefore a small ESm2 . Similarly, for any band mi, it must have a 

greater distance to the bands of larger ES. Since EBBS considers the local density and correlation between 

bands concurrently, it is likely to select more logical subset of bands.  

 

III. Simplex Growing Algorithm 

The simplex growing algorithm (SGA) was developed as an alternative to the N-finder algorithm (N-

FINDR)and shows potential endmember extraction technique., SGA can efficiently address the following four 

major issues which arise in the practical implementation for N-FINDR: 1) use of random initial endmembers 

which causes unpredictable final results; 2) high computational complexity which results from an 

comprehensive search for finding all endmembers simultaneously; 3) requirement of dimensionality reduction 

because of large data volumes; and 4) lack of RT capability.  

According to N-FINDR, for a given positive integer p, a simplex formed by p endmember produces the 

maximum volume among all possible simplexes formed by any set of p data sample vectors. Using this 
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principle, SGA grows the current k-vertex simplex S (e 
(0)

, e 
(1)

 , . . . ,e 
(k−1)

 ) to a (k +1)-vertex simplex S(e
(0)

, e
(1)

, 

. . . , e
(k−1)

, e
(k)

) by finding a new (k + 1)
th

 vertex e
(k)

 so  that the new (k + 1)- vertex simplex S(e
(0)

, e
(1)

, . . . , e
(k−1)

, 

e
(k)

) produces its volume no less than the volumes of all possible (k + 1)-vertex simplexes S(e
(0)

, e
(1)

, . . . , e
(k−1)

, 

r) increased by any other data sample vector r. The implementation of simplex process is based on the following 

algorithm: 

1) Initialization: 

a) Let p be the number of endmembers to be generated. 

b) There are two ways to generate random  initial endmembers for SGA. 

i. Select data sample random vector as an initial endmember  e
(0)

 and set  k = 0. In this case, the SGA is 

referred to as 1-SGA. 

ii. Randomly select a pair of two data sample vectors (e
(0)

, e
(1)

) to form a random degenerate 2-D simplex 

which is a line segment connecting e
(0)

 and e
(1)

. Set  k= 1. In this case, the SGA is referred to as 2-SGA. 

 

2) At k ≥ 0 and for each sample vector r, we calculate V (e
(0)

, . . . , e
(k)

, r) defined by 

𝑉 e 0  ,  …, e k  , r =
det 

1 1        ⋯    1         1

e 0 e 1  ⋯     e k    r
 

k!
      (5) 

which is the volume of the simplex specified by vertices e
(0)

, e
(1)

, . . . , e
(k)

, r, denoted by S(e
(0)

, e
(1)

, . . . , e
(k)

, r). 

Since the matrix 
𝑑𝑒𝑡  

1 1        ⋯    1                1

𝑒  0 𝑒  1      ⋯     𝑒  𝑘              𝑟
 

𝑘 !
 in (5) is not necessarily a square matrix, a DR technique such as 

principal components analysis (PCA) or maximum noise fraction (MNF) is required to reduce the original data 

dimensionality L to the dimension k + 1. 

3) Find e(k+1) that yields the maximum of  (5),i.e., 

    e(k+1) = arg  max 
r

    V  e(0) ,… , e(k) , r       (6) 

 4) Stopping rule:If k < p − 1, then k ← k + 1 and gostep 2). Otherwise, the final set of {e
(0)

, e
(1)

, .e
(p−1)

} is the 

desired p endmembers. 

 
 

IV. Proposed Methodology 

In this proposed method, the hyperspectral image is first read and the dimension is roughly reduced. 

Virtual Dimensionality (VD) estimates the number of endmembers present in the HSI image. Virtual 

dimensionality (VD) also provides an effective alternative.A new band selection method is proposed using the 

Exemplar Based Band Selection (EBBS) for selecting the exemplar bands respectively. It prioritizes the bands 

according to their exemplar score, which is an easy-to-compute. Then a new algorithm, called SGA, is proposed 

for endmember extraction to find a set of desired endmembers by growing a sequence of simplexes. It starts off 

with two vertices and begins to grow a simplex by increasing its vertices one at a time. Finally, the performance 

of the different band selection methods are analyzed with SGA as  endmember extraction algorithm and 

evaluated that EBBS with SGA is indeed superior in endmember extraction by deriving most informative bands 

compared to the other band selection methods. The steps involved in our proposed method are clearly depicted 

below and the block diagram is shown in Fig 1. 

1. Read Hyperspectral Image 

2. VD is estimated to know the number of bands required for band selection algorithm. 

3. Exemplar Component Analysis is used for selecting the exemplar bands. 

4. SGA is used for endmember extraction to detect a set of desired endmembers by growing a sequence of 

simplexes. 

5. The performance are compared between different band selection algorithm and evaluated that EBBS with 

SGA is indeed superior in endmember extraction. 
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Fig 1. Block Diagram of proposed method 

V. Experimental Results 

Here, we estimate the number of bands to be selected using VD estimation and also identify the 

efficient band selection method by comparing various band selection algorithms. The SGA is analyzed as 

endmember extraction algorithm for the performance of various band selection methods. The other images can 

also be used to analyze the band selection algorithm for endmember extraction in hyperspectral images. The 

performance of the different band selection methods are analyzed with SGA as  endmember extraction 

algorithm. For comparison we choose three different types of band selection method :Constrained Band 

Selection (CBS), Exemplar Based Band Selection (EBBS), Similarity Based Band Selection (SBBS). To 

evaluate their performance, Spectral Angle Distance (SAD) is used. The endmembers from the selected bands 

using simplex growing algorithms are extracted. 

 

A. Cuprite Image 
The hyperspectral image cuprite is being considered for experimentation as shown in Fig 2. 

 
Fig 2. Hyperspectral image CUPRITE. 

 

B. Groundtruth Spectral Signatures 

The groundtruth spectral signatures of five minerals – Alunite, BuddingTonite, Calcite, Kaolinite, Muscovite are 

shown in Fig 2..  
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Fig  2. The groundtruth spectral signatures of five minerals 

 

C. VD Estimation  

Virtual Dimensionality (VD) estimates the number of endmembers present in the HSI image. The VD 

estimation with different false alarm rate for cuprite is tabulated in Table I. It is shown that the VD estimation 

can also be used as the number of endmembers that are to be generated. 

Table I: VD Estimation With Different False Alarm  Rate For Cuprite 

 
D. Band Selection 

The comparison of selected bands using different techniques and the performance comparison between different 

band selection algorithms were shown in Table II and Table III. 

 

Table II: Comparison Of Selected Bands Using Different Techniques 

Criteria Selected Bands 

CBS 26/117/48/37/189/64/1/185/10/172/47/4/60/28/165/17/5/2/151/158/3/94 

SBBS 8/14/26/39/53/71/91/106/114/132/149/153/157/163/172 

EBBS 63/64/66/81/82/105/107/134/135/136/137/138/146/151/153/154/156/162/169/177/180/181 

 

Table III: Performance Comparison Between Different Band Selection Algorithms 

 CBS SBBS EBBS 

 SAD(%) 

Alunite 5.62 4.82 4.54 

Buddingtonite 5.25 3.88 5.76 

Calcite 6.56 8.73 5.76 

Kaolinite 4.90 9.22 6.35 

Muscovite 6.73 7.39 4.73 

Average 5.81 6.81 5.49 

 

The bar chart for the performance comparison between different band selection algorithms are shown separately 

from Fig. 3 to Fig. 8 
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Fig. 3 Endmember ALUNITE 

 

 
Fig. 4 Endmember BUDDINGTONITE 

 
Fig. 5 Endmember CALCITE 

 

 
Fig. 6 Endmember KAOLINITE 
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Fig. 7 Endmember MUSCOVITE 

 

 
Fig. 8 Average SAD for CUPRITE 

 

VI. Conclusion 

The performance of the different band selection methods are analyzed with SGA as  endmember 

extraction algorithm. The bands are selected using various comparisons such as constrained band selection, 

similarity based band selection and exemplar based band selection. And also the performance comparison 

between different band selection algorithms has been made using spectral angle distance. The proposed method 

of dimensionality reduction using exemplar based band selection method provides better band selection. The 

experimental results prove that the average SAD using EBBS is 0.32% lower than the average SAD using CBS 

and the average SAD using EBBS is 1.32% lower than the average SAD using SBBS. It has been proved that 

Exemplar Based Band Selection (EBBS) with Simplex Growing Algorithm (SGA) is indeed superior in 

endmember extraction by deriving most informative bands compared to the other band selection methods. 
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